

Quantum Algorithms for Chemistry, Physics and Beyond

Jakob S. Kottmann

N-Body Problem

$$H(x,y) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} - \frac{1}{2}\frac{\partial^2}{\partial y^2} + \frac{1}{\|x-y\|} + f(x) + f(y)$$

Example: 2-Body Hamiltonian

N-Body Problem

$$H(x,y) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} - \frac{1}{2}\frac{\partial^2}{\partial y^2} + \frac{1}{\|x-y\|} + f(x) + f(y)$$

Example: 2-Body Hamiltonian

Classical Domain

effective one/two-body problems

$$F(x) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x,\phi)$$
$$F(x)\phi_k(x) = a_k\phi_k(x)$$

JSK, Schleich, Tamayo-Mendoza, Aspuru-Guzik. J.Chem.Phys.Lett. 2021

N-Body Problem

$$H(x,y) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} - \frac{1}{2}\frac{\partial^2}{\partial y^2} + \frac{1}{\|x-y\|} + f(x) + f(y)$$

Traditional Approach

Advantages

- well established
- fast integrals

Drawbacks

- no black-box
- inconvenient (many excisting basis sets per atom)
- more qubits necessary
- undetermined numerical error

Some Energy

System-Adapted Approach

Advantages

- defined numerical error
- can be treated as black-box
- low qubit numbers

Drawbacks

- not well established
- comparably high classical computational cost formal scaling is often better though

high-level blog article:

https://aspuru.substack.com/p/bits-are-cheap-and-qubits-expensive

JSK, Schleich, Tamayo-Mendoza, Aspuru-Guzik. J.Chem.Phys.Lett. 2021

System Adapted Approach: Behind the Scenes

1 Dimensional Example

R.J. Harrison et.al SIAM 2016

Review (classical methods): F.A. Bischoff Adv. Quant. Chem. 2019

JSK, F. A. Bischoff, E. F. Valeev. J. Chem. Phys. 2020

Direct 2-body approach: JSK, F. A. Bischoff, J. Chem. Theo. & Comp. 2018

System Adapted Approach: Behind the Scenes

1 Dimensional Example

2 Dimensional Example

R.J. Harrison et.al SIAM 2016

Review (classical methods): F.A. Bischoff Adv. Quant. Chem. 2019

JSK, F. A. Bischoff, E. F. Valeev. J. Chem. Phys. 2020

Direct 2-body approach: JSK, F. A. Bischoff, J. Chem. Theo. & Comp. 2018

System Adapted Approach: Behind the Scenes

1 Dimensional Example

2 Dimensional Example

R.J. Harrison et.al SIAM 2016

Review (classical methods): F.A. Bischoff Adv. Quant. Chem. 2019

github/madness

Harrison et. al.

Classical Domain effective one/two-body problems $F(x) = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x,\phi)$ $F(x)\phi_k(x) = a_k\phi_k(x)$

JSK, F. A. Bischoff, E. F. Valeev. J. Chem. Phys. 2020

Direct 2-body approach: JSK, F. A. Bischoff, J. Chem. Theo. & Comp. 2018

Basis-Set-Free Quantum Chemistry: Performance

System-Adapted Approach

JSK, Schleich, Tamayo-Mendoza, Aspuru-Guzik. J.Chem.Phys.Lett. 2021

what about the wavefunction model?

one way forward: quantum circuits

Task: Implement a unitary evolution

$$U=e^{i\theta G}$$

G is Hermitian 1 or 2 qubit operator

 $\theta \in \mathbb{R}$ free parameter

Can be automatically differentiated pioneers: M. Schuld *et.al* PRA 2019, Pennylane

Optimizing quantum circuits: VQE (McClean et.al.) and QAOA (Farhi et.al.)

Tequila: High Level Environment

JSK, S. Alperin-Lea, A. Cervera-Lierta, T. Tamayo-Mendoza, et. al. Quant. Science & Technology 2021

•

transformation = 0.5×2

Tequila: High Level Environment

a = tq.Variable("a") U = tq.gates.Ry(angle=(-a**2).apply(tq.numpy.exp)*pi, target=0) U += tq.gates.X(target=1, control=0) H = tq.QubitHamiltonian.from_string("-1.0*X(0)X(1)+0.5Z(0)+Y(1)") E = tq.ExpectationValue(H=H, U=U) dE = tq.grad(E, "a") objective = E + (-dE**2).apply(tq.numpy.exp) result = tq.minimize(method="phoenics", objective=objective) Some Development Examples

Development Example: Advanced Gradients for Quantum Chemistry

gradient cost for n electron excitation

Generator Form	Gradient Cost	Strategy				
$G_{\mathbf{pq}} = \sum_{\mathbf{i}} c_{\mathbf{i}} \sigma_{\mathbf{i}}$	$\mathcal{O}\left(2^{2n}\right)$	shift-rule Eq. (6)				
$G_{\mathbf{pq}} = \frac{1}{2} \left(G_+ + G \right)$	4	fermionic-shift Eq. (16)				
Real Wavefunctions						
$G_{\bf pq} = \frac{1}{2} \left(G_+ + G \right)$	2	fermionic-shift Eq. (19)				
Generator Approximation						
$G_{\mathbf{pq}} \approx G_{\pm}$	2	shift-rule Eq. (6)				

Basic building blocks for Unitary Coupled-Cluster

recent review: A. Anand et.al. 2021

Development Example: Separable Pair Approximations

JSK, A. Aspuru-Guzik, Arxiv:2105.03836, 2021

Development Example: Separable Pair Approximations

 $\rightarrow~$ cheap initial states

separated pairs

 \rightarrow distributed schemes

 \rightarrow hybrid simulation

$Molecule(N_e, N_q)$	$N_{\rm param}$	$N_{\rm cnot}$	Depth
$H_2(2,4)$	1	3	3
LiH(2,10)	4	15	18
$BeH_{2}(4,8)$	2	6	3
$BeH_2(6,14)$	4	15	7
$BH_3(6,12)$	3	9	3
$N_2(6,12)$	3	9	3
$C_2H_4(12,24)$	6	18	3
$H_2O_2(14,28)$	7	21	3
$C_2H_6(14,28)$	7	21	3
$C_2H_6(2,12)$	5	19	23
$C_2H_6(14,84)$	35	133	23

High level circuit design through physical principles

Development Example: Separable Pair Approximations

High level circuit design through physical principles

JSK, A. Aspuru-Guzik, Arxiv:2105.03836, 2021

Possible Extensions

Khamoshi, Evangelista, Scuseria, QST, 2020

class JordanWigner(EncodingBase): def hcb_to_me(self, *args, **kwargs): U = QCircuit() for i in range(self.n_orbitals): U += X(target=self.down(i), control=self.up(i)) return U

 $U_{\rm HCB}^{\rm X} = U_{\rm JW}^{\rm X} U_{\rm HCB}^{\rm JW}$

 $X \in \{Bravyi-Kitaev, \dots\}$

quasi-local codes: Chien & Whitfield, arXiv:2009.11860 BKSF: Setia, Bravyi, Mezzacapo, Whitfield, PRR 2019

Recent Developments

Explicit Correlation

P. Schleich, JSK, A. Aspuru-Guzik, Arxiv:2110.06812, 2021

See also: Master thesis from Philipp Schleich (detailed introduction)

Robustness Intervals: Weber et.al, arXiv:2110.09793

	SDP	Gramian	
	Expectation $\langle A \rangle_{\sigma}$	Expectation $\langle A \rangle_{\sigma}$	Eigenvalue λ
Lower Bound	$(1-2\epsilon)\langle A\rangle_{\rho} - 2\sqrt{\epsilon(1-\epsilon)(1-\langle A\rangle_{\rho}^2)}$	$(1-2\epsilon)\langle A\rangle_{\rho} - 2\sqrt{\epsilon(1-\epsilon)}\Delta A_{\rho} + \frac{\epsilon\langle A^2\rangle_{\rho}}{\langle A\rangle_{\rho}}$	$\langle A \rangle_{\rho} - \Delta A_{\rho} \sqrt{\frac{\epsilon}{1-\epsilon}}$
Upper Bound	$(1-2\epsilon)\langle A\rangle_{\rho} + 2\sqrt{\epsilon(1-\epsilon)(1-\langle A\rangle_{\rho}^2)}$		$\langle A \rangle_{\rho} + \Delta A_{\rho} \sqrt{\frac{\epsilon}{1-\epsilon}}$
Assumptions	$-1 \le A \le 1$	$A \ge 0$	$\sigma = \psi\rangle \langle \psi \ \wedge \ A \psi\rangle = \lambda \psi\rangle$

TABLE I. Overview of bounds for the expectation values and eigenvalues of an Hermitian operator A under a target state σ , with ρ an approximation of σ . For the eigenvalue bound, $\sigma = |\psi\rangle\langle\psi|$ is the density operator corresponding to the eigenstate $|\psi\rangle$ with eigenvalue $\lambda = \langle\psi|A|\psi\rangle$. We remark that the SDP lower and upper bounds are valid for fidelities with $\mathcal{F}(\rho, \sigma) \ge 1 - \epsilon$ for $\epsilon \ge 0$ such that $\epsilon \le \frac{1}{2}(1 + \langle A \rangle_{\rho})$ and $\epsilon \le \frac{1}{2}(1 - \langle A \rangle_{\rho})$, respectively. The Gramian lower bound for expectation values is valid for $\epsilon \ge 0$ with $\sqrt{1-\epsilon_{\ell}} \ge \Delta A_{\rho}/\langle A \rangle_{\rho}$.

gradients, orbitals, circuits: All used in black-box fashion

Tequila Contributors:

Aspuru-Guzik-Group: Sumner Alperin-Lea	Izmaylov Group: Thomson Yen,	Quantum Open-Source Foundation: Brandon Solo,	
Teresa Tamayo-Ivienuoza	viauysiav verteietskyr	Georgios Isliiniigkounakis,	
Alba Cervera Lierta	Zack Bansingh	Claudia Zendejas-Morales,	
Cyrille Lavigne,	<u> </u>	Tanya Garg	vou?
Philipp Schleich,	External:		you.
Matthias Degroote,	Alejandro Bravo de la S	Serna	
Skylar Chaney,	Leo Becker Mauric	e Weher Arianne van den Griend	
Maha Kesibi,	David Wierichs		
Naomi Grace Curnow			-